Flocculation Patterns Related to Intra-Annual Hydrodynamics Variability in the Lower Grijalva-Usumacinta System
Particle aggregation modifies sediment dynamics, which is a determining factor for morphodynamic and ecological processes in deltaic plains. Here, we investigated the link between intra-annual hydrodynamics variability and flocculation in the Grijalva-Usumacinta system. Monthly (2016–2017) and seaso...
Saved in:
Published in: | Water (Basel) Vol. 15; no. 2; p. 292 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particle aggregation modifies sediment dynamics, which is a determining factor for morphodynamic and ecological processes in deltaic plains. Here, we investigated the link between intra-annual hydrodynamics variability and flocculation in the Grijalva-Usumacinta system. Monthly (2016–2017) and seasonal (2021–2022) river data was processed using analytical methods and the simplified sonar equation. Flocs were reformed and characterized in the laboratory, validating the in situ settling velocities (0.5–3.8 mm/s) and the existence of large low-density macro-flocs (>300 μm). We verified that flocculation prevailed, exhibiting seasonal patterns; (1) the highest aggregation rates matched the increase in total suspended solids at rising-flow (>100 mg/L), (2) periods of high-flow showed stable aggregation rates, and (3) an influence of marine conditions occurred at low-flow. Particulate phosphorous and organic fraction showed seasonal patterns linked to flocculation. Due to damming, the shear rates varied slightly (7–11 L/s) in the Grijalva, leading to high flocculation intensities affecting the diffusivity ratio. In the Usumacinta, aggregation was limited by shear rates that normally exceed 15 1/s. We found seasonal Rouse parameters representative of sediment dynamics. |
---|---|
ISSN: | 2073-4441 |
DOI: | 10.3390/w15020292 |