SPECTRAL PROPERTIES OF STATIONARY SOLUTIONS OF THE NONLINEAR HEAT EQUATION
In this paper, we prove that if Ψ is a radially symmetric, signchanging stationary solution of the nonlinear heat equation (NLH) ut – Δu = |u|αu, in the unit ball of ℝN, N = 3, with Dirichlet boundary conditions, then the solution of (NLH) with initial value λΨ blows up in finite time if |λ — 1| >...
Saved in:
Published in: | Publicacions matemàtiques Vol. 55; no. 1; pp. 185 - 200 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Universitat Autònoma de Barcelona
01-01-2011
Universitat Autònoma de Barcelona, Departament de Matemàtiques |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove that if Ψ is a radially symmetric, signchanging stationary solution of the nonlinear heat equation (NLH) ut – Δu = |u|αu, in the unit ball of ℝN, N = 3, with Dirichlet boundary conditions, then the solution of (NLH) with initial value λΨ blows up in finite time if |λ — 1| > 0 is sufficiently small and if α > 0 is sufficiently small. The proof depends on showing that the inner product of Ψ with the first eigenfunction of the linearized operator L = -Δ-(α + 1)|Ψ|α is nonzero. |
---|---|
ISSN: | 0214-1493 2014-4350 |
DOI: | 10.5565/PUBLMAT_55111_09 |