SPECTRAL PROPERTIES OF STATIONARY SOLUTIONS OF THE NONLINEAR HEAT EQUATION

In this paper, we prove that if Ψ is a radially symmetric, signchanging stationary solution of the nonlinear heat equation (NLH) ut – Δu = |u|αu, in the unit ball of ℝN, N = 3, with Dirichlet boundary conditions, then the solution of (NLH) with initial value λΨ blows up in finite time if |λ — 1| >...

Full description

Saved in:
Bibliographic Details
Published in:Publicacions matemàtiques Vol. 55; no. 1; pp. 185 - 200
Main Authors: Cazenave, Thierry, Dickstein, Flávio, Weissler, Fred B.
Format: Journal Article
Language:English
Published: Universitat Autònoma de Barcelona 01-01-2011
Universitat Autònoma de Barcelona, Departament de Matemàtiques
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we prove that if Ψ is a radially symmetric, signchanging stationary solution of the nonlinear heat equation (NLH) ut – Δu = |u|αu, in the unit ball of ℝN, N = 3, with Dirichlet boundary conditions, then the solution of (NLH) with initial value λΨ blows up in finite time if |λ — 1| > 0 is sufficiently small and if α > 0 is sufficiently small. The proof depends on showing that the inner product of Ψ with the first eigenfunction of the linearized operator L = -Δ-(α + 1)|Ψ|α is nonzero.
ISSN:0214-1493
2014-4350
DOI:10.5565/PUBLMAT_55111_09