Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries

A computational procedure is presented for solving complex variably saturated flows in porous media, that may easily be implemented into existing conventional finite‐volume‐based computational fluid dynamics codes, so that their functionality might be geared upon to readily enable the modelling of a...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 50; no. 9; pp. 1085 - 1117
Main Authors: McBride, D., Cross, M., Croft, N., Bennett, C., Gebhardt, J.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 30-03-2006
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A computational procedure is presented for solving complex variably saturated flows in porous media, that may easily be implemented into existing conventional finite‐volume‐based computational fluid dynamics codes, so that their functionality might be geared upon to readily enable the modelling of a complex suite of interacting fluid, thermal and chemical reaction process physics. This procedure has been integrated within a multi‐physics finite volume unstructured mesh framework, allowing arbitrarily complex three‐dimensional geometries to be modelled. The model is particularly targeted at ore heap‐leaching processes, which encounter complex flow problems, such as infiltration into dry soil, drainage, perched water tables and flow through heterogeneous materials, but is equally applicable to any process involving flow through porous media, such as in environmental recovery processes. The computational procedure is based on the mixed form of the classical Richards equation, employing an adaptive transformed mixed algorithm that is numerically robust and significantly reduces compute (or CPU) time. The computational procedure is accurate (compares well with other methods and analytical data), comprehensive (representing any kind of porous flow model), and is computationally efficient. As such, this procedure provides a suitable basis for the implementation of large‐scale industrial heap‐leach models. Copyright © 2005 John Wiley & Sons, Ltd.
Bibliography:ArticleID:FLD1087
istex:F22E4778DE54BCF0B6206547AFD1A71240884526
ark:/67375/WNG-MDC11RH9-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0271-2091
1097-0363
DOI:10.1002/fld.1087