Enhanced osteogenic differentiation of mesenchymal stem cells on metal–organic framework based on copper, zinc, and imidazole coated poly‐l‐lactic acid nanofiber scaffolds
The presence of inorganic bioactive minerals with polymers can accelerate and promote several processes including: bone cell joining, proliferation, differentiation, and expression of osteogenic proteins. In this study, zinc (Zn), copper (Cu), and imidazole metal–organic framework (MOF) nanoparticle...
Saved in:
Published in: | Journal of biomedical materials research. Part A Vol. 107; no. 8; pp. 1841 - 1848 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-08-2019
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The presence of inorganic bioactive minerals with polymers can accelerate and promote several processes including: bone cell joining, proliferation, differentiation, and expression of osteogenic proteins. In this study, zinc (Zn), copper (Cu), and imidazole metal–organic framework (MOF) nanoparticles were synthesized and coated over poly‐l‐lactic acid (PLLA) nanofibrous scaffolds for bone tissue engineering application. The surface and bioactive features of the scaffolds were characterized. The osteogenic potential of the scaffolds on human adipose tissue‐derived mesenchymal stem cells (MSCs) was evaluated. Zn–Cu imidazole MOF coated PLLA scaffolds (PLLA@MOF) showed a comparable rate of MSC proliferation with the pure PLLA scaffolds and tissue culture plate (TCP). However, the PLLA@MOF potential of osteogenic differentiation was significantly greater than either pristine PLLA scaffolds or TCP. Hence, coating Zn–Cu imidazole MOF has a significant effect on the osteogenesis of MSC. Therefore, PLLA@MOF is novel scaffolds with bioactive components which are crucial for osteoconductivity and also able to provoke the osteogenesis and angiogenesis. |
---|---|
Bibliography: | Funding information University of Tehran ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-3296 1552-4965 |
DOI: | 10.1002/jbm.a.36707 |