Chemical-potential route for multicomponent fluids

The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixtures with zero or positive nonadditivity. As a simple...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 87; no. 5; p. 052138
Main Authors: Santos, Andrés, Rohrmann, René D
Format: Journal Article
Language:English
Published: United States 01-05-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixtures with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are derived from the Percus-Yevick theory and the associated equation of state is obtained. This Percus-Yevick chemical-route equation of state is shown to be more accurate than the virial equation of state. An interpolation between the chemical-potential and compressibility routes exhibits a better performance than the well-known Boublík-Mansoori-Carnahan-Starling-Leland equation of state.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.87.052138