Discovery of anti-cancer activity for benzo[1,2,4]triazin-7-ones: Very strong correlation to pleurotin and thioredoxin reductase inhibition
[Display omitted] The thioredoxin (Trx)–thioredoxin reductase (TrxR) system plays a key role in maintaining the cellular redox balance with Trx being over-expressed in a number of cancers. Inhibition of TrxR is an important strategy for anti-cancer drug discovery. The natural product pleurotin is a...
Saved in:
Published in: | Bioorganic & medicinal chemistry Vol. 24; no. 16; pp. 3565 - 3570 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
15-08-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The thioredoxin (Trx)–thioredoxin reductase (TrxR) system plays a key role in maintaining the cellular redox balance with Trx being over-expressed in a number of cancers. Inhibition of TrxR is an important strategy for anti-cancer drug discovery. The natural product pleurotin is a well-known irreversible inhibitor of TrxR. The cytotoxicity data for benzo[1,2,4]triazin-7-ones showed very strong correlation (Pearson correlation coefficients ∼0.8) to pleurotin using National Cancer Institute COMPARE analysis. A new 3-CF3 substituted benzo[1,2,4]triazin-7-one gave submicromolar inhibition of TrxR, although the parent compound 1,3-diphenylbenzo[1,2,4]triazin-7-one was more cytotoxic against cancer cell lines. Benzo[1,2,4]triazin-7-ones exhibited different types of reversible inhibition of TrxR, and cyclic voltammetry showed characteristic quasi-reversible redox processes. Cell viability studies indicated strong dependence of cytotoxicity on substitution at the 6-position of the 1,3-diphenylbenzo[1,2,4]triazin-7-one ring. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2016.05.066 |