Universal Reinforcement Learning
We consider an agent interacting with an unmodeled environment. At each time, the agent makes an observation, takes an action, and incurs a cost. Its actions can influence future observations and costs. The goal is to minimize the long-term average cost. We propose a novel algorithm, known as the ac...
Saved in:
Published in: | IEEE transactions on information theory Vol. 56; no. 5; pp. 2441 - 2454 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-05-2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider an agent interacting with an unmodeled environment. At each time, the agent makes an observation, takes an action, and incurs a cost. Its actions can influence future observations and costs. The goal is to minimize the long-term average cost. We propose a novel algorithm, known as the active LZ algorithm, for optimal control based on ideas from the Lempel-Ziv scheme for universal data compression and prediction. We establish that, under the active LZ algorithm, if there exists an integer K such that the future is conditionally independent of the past given a window of K consecutive actions and observations, then the average cost converges to the optimum. Experimental results involving the game of Rock-Paper-Scissors illustrate merits of the algorithm. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2010.2043762 |