Identification of wheat quality using THz spectrum

The terahertz (THz) spectra in the range of 0.2-1.6 THz (6.6-52.8 cm ) of wheat grains with various degrees of deterioration (normal, worm-eaten, moldy, and sprouting wheat grains) were investigated by terahertz time domain spectroscopy. Principal component analysis (PCA) was employed to extract fea...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 22; no. 10; pp. 12533 - 12544
Main Authors: Ge, Hongyi, Jiang, Yuying, Xu, Zhaohui, Lian, Feiyu, Zhang, Yuan, Xia, Shanhong
Format: Journal Article
Language:English
Published: United States 19-05-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The terahertz (THz) spectra in the range of 0.2-1.6 THz (6.6-52.8 cm ) of wheat grains with various degrees of deterioration (normal, worm-eaten, moldy, and sprouting wheat grains) were investigated by terahertz time domain spectroscopy. Principal component analysis (PCA) was employed to extract feature data according to the cumulative contribution rates; the top four principal components were selected, and then a support vector machine (SVM) method was applied. Several selection kernels (linear, polynomial, and radial basis functions) were applied to identify the four types of wheat grain. The results showed that the materials were identified with an accuracy of nearly 95%. Furthermore, this approach was compared with others (principal component regression, partial least squares regression, and back-propagation neural networks). The comparisons showed that PCA-SVM outperformed the others and also indicated that the proposed method of THz technology combined with PCA-SVM is efficient and feasible for identifying wheat of different qualities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.22.012533