Discriminative Dimensionality Reduction for Multi-Dimensional Sequences

Since the observables at particular time instants in a temporal sequence exhibit dependencies, they are not independent samples. Thus, it is not plausible to apply i.i.d. assumption-based dimensionality reduction methods to sequence data. This paper presents a novel supervised dimensionality reducti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 1; pp. 77 - 91
Main Authors: Su, Bing, Ding, Xiaoqing, Wang, Hao, Wu, Ying
Format: Journal Article
Language:English
Published: United States IEEE 01-01-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the observables at particular time instants in a temporal sequence exhibit dependencies, they are not independent samples. Thus, it is not plausible to apply i.i.d. assumption-based dimensionality reduction methods to sequence data. This paper presents a novel supervised dimensionality reduction approach for sequence data, called Linear Sequence Discriminant Analysis (LSDA). It learns a linear discriminative projection of the feature vectors in sequences to a lower-dimensional subspace by maximizing the separability of the sequence classes such that the entire sequences are holistically discriminated. The sequence class separability is constructed based on the sequence statistics, and the use of different statistics produces different LSDA methods. This paper presents and compares two novel LSDA methods, namely M-LSDA and D-LSDA. M-LSDA extracts model-based statistics by exploiting the dynamical structure of the sequence classes, and D-LSDA extracts the distance-based statistics by computing the pairwise similarity of samples from the same sequence class. Extensive experiments on several different tasks have demonstrated the effectiveness and the general applicability of the proposed methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2017.2665545