Color-selecting reflectors inspired from biological periodic multilayer structures
We propose a semi-infinite 1-D photonic crystal approach for designing artificial reflectors which aim to reproduce color changes with the angle of incidence found in biological periodic multilayer templates. We show that both the dominant reflected wavelength and the photonic bandgap can be predict...
Saved in:
Published in: | Optics express Vol. 14; no. 8; pp. 3547 - 3555 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
17-04-2006
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a semi-infinite 1-D photonic crystal approach for designing artificial reflectors which aim to reproduce color changes with the angle of incidence found in biological periodic multilayer templates. We show that both the dominant reflected wavelength and the photonic bandgap can be predicted and that these predictions agree with exact calculations of reflectance spectra for a finite multilayer structure. In order to help the designer, the concept of spectral richness of angle-tuned color-selecting reflectors is introduced and color changes with angle are displayed in a chromaticity diagram. The usefulness of the photonic crystal approach is demonstrated by modelling a biological template (found in the cuticle of Chrysochora vittata beetle) and by designing a bio-inspired artificial reflector which reproduces the visual aspect of the template. The bioinspired novel aspect of the design relies on the strong unbalance between the thicknesses of the two layers forming the unit cell. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.14.003547 |