VARIUS: A Model of Process Variation and Resulting Timing Errors for Microarchitects
Within-die parameter variation poses a major challenge to high-performance microprocessor design, negatively impacting a processor's frequency and leakage power. Addressing this problem, this paper proposes a microarchitecture-aware model for process variation-including both random and systemat...
Saved in:
Published in: | IEEE transactions on semiconductor manufacturing Vol. 21; no. 1; pp. 3 - 13 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
New York, NY
IEEE
01-02-2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within-die parameter variation poses a major challenge to high-performance microprocessor design, negatively impacting a processor's frequency and leakage power. Addressing this problem, this paper proposes a microarchitecture-aware model for process variation-including both random and systematic effects. The model is specified using a small number of highly intuitive parameters. Using the variation model, this paper also proposes a framework to model timing errors caused by parameter variation. The model yields the failure rate of microarchitectural blocks as a function of clock frequency and the amount of variation. With the combination of the variation model and the error model, we have VARIUS, a comprehensive model that is capable of producing detailed statistics of timing errors as a function of different process parameters and operating conditions. We propose possible applications of VARIUS to microarchitectural research. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0894-6507 1558-2345 |
DOI: | 10.1109/TSM.2007.913186 |