Effects of Chloramine T on zebrafish embryos malformations associated with cardiotoxicity and neurotoxicity
Chloramine T, a sodium p-toluene sulfonchloramide, is known to possess a wide spectrum of biocidal activity and is employed as a disinfectant in fish farms to treat bacterial infections. Although Chloramine T may effectively combat pathogens, the sublethal and lethal effects and changes in acetylcho...
Saved in:
Published in: | Journal of Toxicology and Environmental Health, Part A Vol. 86; no. 11; pp. 372 - 381 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Taylor & Francis
03-06-2023
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chloramine T, a sodium p-toluene sulfonchloramide, is known to possess a wide spectrum of biocidal activity and is employed as a disinfectant in fish farms to treat bacterial infections. Although Chloramine T may effectively combat pathogens, the sublethal and lethal effects and changes in acetylcholinesterase (AChE) activity remain poorly elucidated using Danio rerio (zebrafish) embryos. Zebrafish is considered a model organism for toxicant screening research and exhibits mammalian-like physiological responses when exposed to environmental pollutants. The aim of this study was to (1) determine LC
50
of Chloramine T after 96 hr exposure, (2) verify disinfectant effects on developmental morphology, and (3) evaluate the disinfectant effects on AChE activity in zebrafish embryos. Chloramine T exposure was performed using 16, 32, 64, 128, or 256 mg/L concentrations. The mortality LC
50
values were 143.05 ± 3.11 and 130.97 ± 7.4 mg/L at 24 and 96 hr, respectively. Data demonstrated delayed hatching, reduced heartbeats, cardiac edema, and equilibrium disruption of hatched larvae throughout embryonic development. In addition, Chloramine T inhibited AChE activity at 64 or 128 mg/L after 96 hr treatment, corroborating the sub-lethality results observed in zebrafish embryo development and demonstrating an equilibrium disruption in zebrafish larvae. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1528-7394 1087-2620 2381-3504 |
DOI: | 10.1080/15287394.2023.2205271 |