In situ measurements of human cough aerosol hygroscopicity

The airborne dynamics of respiratory droplets, and the transmission routes of pathogens embedded within them, are governed primarily by the diameter of the particles. These particles are composed of the fluid which lines the respiratory tract, and is primarily mucins and salts, which will interact w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Society interface Vol. 18; no. 178; p. 20210209
Main Authors: Groth, Robert, Cravigan, Luke T, Niazi, Sadegh, Ristovski, Zoran, Johnson, Graham R
Format: Journal Article
Language:English
Published: England The Royal Society 05-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The airborne dynamics of respiratory droplets, and the transmission routes of pathogens embedded within them, are governed primarily by the diameter of the particles. These particles are composed of the fluid which lines the respiratory tract, and is primarily mucins and salts, which will interact with the atmosphere and evaporate to reach an equilibrium diameter. Measuring organic volume fraction (OVF) of cough aerosol has proved challenging due to large variability and low material volume produced after coughing. Here, the diametric hygroscopic growth factors (GF) of the cough aerosol produced by healthy participants were measured using a rotating aerosol suspension chamber and a humidification tandem differential mobility analyser. Using hygroscopicity models, it was estimated that the average OVF in the evaporated cough aerosol was 0.88 ± 0.07 and the average GF at 90% relative humidity (RH) was 1.31 ± 0.03. To reach equilibrium in dry air the droplets will reduce in diameter by a factor of approximately 2.8 with an evaporation factor of 0.36 ± 0.05. Hysteresis was observed in cough aerosol at RH = ∼35% and RH = ∼65% for efflorescence and deliquescence, respectively, and may depend on the OVF. The same behaviour and GF were observed in nebulized bovine bronchoalveolar lavage fluid.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5401779.
ISSN:1742-5662
1742-5689
1742-5662
DOI:10.1098/rsif.2021.0209