Investigation of optical limiting in iron oxide nanoparticles
We present the study of optical limiting in iron oxide nanoparticles of diameters 31, 44, and 61 nm dispersed in toluene under exposure to nanosecond laser pulses at 532 nm. In the low fluence region smaller size nanoparticles show better optical limiting compared to larger size nanoparticles while...
Saved in:
Published in: | Optics express Vol. 16; no. 12; pp. 8440 - 8450 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
09-06-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the study of optical limiting in iron oxide nanoparticles of diameters 31, 44, and 61 nm dispersed in toluene under exposure to nanosecond laser pulses at 532 nm. In the low fluence region smaller size nanoparticles show better optical limiting compared to larger size nanoparticles while in the high fluence region all the three samples show same limiting performance. Experimental results were compared with the well reported limiter fullerene C(60) dissolved in toluene. Iron oxide nanoparticles show better optical limiting compared to C(60) in the intermediate fluence region and comparable performance in the high fluence region. The pico-second Z-scan studies indicate that the contribution of electronic nonlinear refractive index and the two-photon absorption to the optical limiting is negligible. Our observations further indicate that the dominant mechanism for the optical limiting in iron oxide nanoparticles is nonlinear scattering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.16.008440 |