UPObase: an online database of unspecific peroxygenases
There are many unspecific peroxygenases (UPOs) or UPO-like extracellular enzymes secreted by fungal species. These enzymes are considered special in their ways of catalyzing a wide variety of reactions such as epoxidation, peroxygenation and electron oxidations. This enzyme family exhibits diverse f...
Saved in:
Published in: | Database : the journal of biological databases and curation Vol. 2019 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
01-01-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There are many unspecific peroxygenases (UPOs) or UPO-like extracellular enzymes secreted by fungal species. These enzymes are considered special in their ways of catalyzing a wide variety of reactions such as epoxidation, peroxygenation and electron oxidations. This enzyme family exhibits diverse functions with thousands of UPOs and UPO-like sequences. These sequences are difficult to analyze without proper management tool and therefore desperately calls for a unified platform that can aide with annotation, classification, navigation and easy sequence retrieval. This prompted us to create an online database called Unspecific Peroxygenase Database (UPObase) (upobase.bioinformaticsreview.com) which currently includes 1948 peroxygenase-encoding protein sequences mined from more than 800 available fungal genomes. It provides information such as classification and motifs about each sequence and has functions such as homology search against UPObase sequence analyses such as multiple sequence alignments and phylogenetic trees. It also provides a new sequence submission facility. The database has been made user-friendly facilitating systematic search and filters. UPObase allows users to search for the sequences by organism name, cluster ID and accession number. Notably, in our previous study, 113 UPOs were classified into five subfamilies (I, II, III, IV and V) and an undetermined group (Pog) which remain established. In this study, using 1948 UPOs in our database, we were able to further identify six novel sub-superfamilies (Pog-a, Pog-b, Pog-c, Pog-d, Pog-e and Pog-f) with signature motifs and two distinct groups in Subfamily I and III, Ia and Ib, IIIa and IIIb, respectively. With the novel UPO-like sequences and classification, UPObase may serve for researchers working in the area of enzyme engineering and related fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1758-0463 1758-0463 |
DOI: | 10.1093/database/baz122 |