Machine learning‐based evaluation technology of 3D spatial distribution of residual radioactivity in large‐scale radioactive structures
During the decommissioning of nuclear and particle accelerator facilities, a considerable amount of large-scale radioactive waste may be generated. Accurately defining the activation level of the waste is crucial for proper disposal. However, directly measuring the internal radioactivity distributio...
Saved in:
Published in: | Nuclear engineering and technology Vol. 56; no. 8; pp. 3199 - 3209 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-08-2024
Elsevier 한국원자력학회 |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During the decommissioning of nuclear and particle accelerator facilities, a considerable amount of large-scale radioactive waste may be generated. Accurately defining the activation level of the waste is crucial for proper disposal. However, directly measuring the internal radioactivity distribution poses challenges. This study introduced a novel technology employing machine learning to assess the internal radioactivity distribution based on external measurements. Random radioactivity distribution within a structure were established, and the photon spectrum measured by detectors from outside the structure was simulated using the FLUKA Monte-Carlo code. Through training with spectrum data corresponding to various radioactivity distributions, an evaluation model for radioactivity using simulated data was developed by above Monte-Carlo simulation. Convolutional Neural Network and Transformer methods were utilized to establish the evaluation model. The machine learning construction involves 5425 simulation datasets, and 603 datasets, which were used to obtain the evaluated results. Preprocessing was applied to the datasets, but the evaluation model using raw spectrum data showed the best evaluation results. The estimation of the intensity and shape of the radioactivity distribution inside the structure was achieved with a relative error of 10%. Additionally, the evaluation based on the constructed model takes only a few seconds to complete the process. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2024.03.021 |