Ran suppresses paclitaxel-induced apoptosis in human glioblastoma cells
Yeast-based functional screening of a human glioblastoma cDNA library identified ras-related nuclear protein (Ran) as a novel suppressor of Bcl-2-associated X protein (Bax), a pro-apoptotic member of the Bcl-2 family of proteins. Yeast cells that expressed human Ran were resistant to Bax-induced cel...
Saved in:
Published in: | Apoptosis (London) Vol. 13; no. 10; pp. 1223 - 1231 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Boston : Springer US
01-10-2008
Springer US Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Yeast-based functional screening of a human glioblastoma cDNA library identified ras-related nuclear protein (Ran) as a novel suppressor of Bcl-2-associated X protein (Bax), a pro-apoptotic member of the Bcl-2 family of proteins. Yeast cells that expressed human Ran were resistant to Bax-induced cell death. In U373MG glioblastoma cells, stable overexpression of Ran significantly attenuated apoptotic cell death induced by the chemotherapeutic agent paclitaxel. FACS analysis demonstrated that Ran is involved in paclitaxel-induced cell cycle arrest. Stable overexpression of Ran also markedly inhibited the phosphorylation of Bcl-2 by paclitaxel, and inhibited the translocation of Bax, the release of cytochrome c and activation of caspase-3. Paclitaxel-induced phosphorylation of c-JUN N-terminal kinase (JNK), but not p38, extracellular signal-regulated kinase and Akt, was markedly suppressed in U373MG cells that stably expressed Ran. These results suggest that Ran suppresses paclitaxel-induced cell death through the downregulation of JNK-mediated signal pathways. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s10495-008-0247-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1360-8185 1573-675X |
DOI: | 10.1007/s10495-008-0247-0 |