Non-ideal behavior of binary aqueous mixtures of some urea derivatives and their capacity to induce lysozyme gelation
[Display omitted] The urea derivatives, namely, ethylurea (EU), 1,3 dimethylurea (1,3-DMU) and 1,1 diethylurea (1,1-DEU), in the limiting regions of their solubilities in water, and tetramethylurea (TMU) at w≥0.65 were investigated in relation to their capacity of inducing hen egg white lysozyme (HE...
Saved in:
Published in: | Journal of colloid and interface science Vol. 507; pp. 190 - 199 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-12-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The urea derivatives, namely, ethylurea (EU), 1,3 dimethylurea (1,3-DMU) and 1,1 diethylurea (1,1-DEU), in the limiting regions of their solubilities in water, and tetramethylurea (TMU) at w≥0.65 were investigated in relation to their capacity of inducing hen egg white lysozyme (HEWL) physical (non-covalent) gelation. Protein transparent gels were generated out of TMU/H2O and 1,1-DEU/H2O, respectively, whereas an intensively turbid gel resulted from sol-gel transition taking place in EU/H2O. Oscillatory rheology revealed distinctions in the gels’ structural and dynamic characteristics. Hydration patterns of the derivatives in solution, sizes of their non-polar domains and supramolecular symmetry features played a central role in their capacity of gel formation and in the gels’ rheological behavior and morphology. Effects on gel characteristics of distinctively positioned ions in the Hofmeister series showed that SCN− disrupted water H-bonding interconnectivity in TMU lysozyme gel, strengthening gel structure, yet maintaining gel transparency. Citrate enhanced system elasticity albeit causing intense turbidity and leading to phase separation. Larger values of the storage modulus, G′, were verified for gels generated from binary mixtures containing urea derivatives with higher dipole moments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2017.07.107 |