Airmass aging metrics derived from particle and other measurements near Fort Worth
The composition, concentration, and size of submicron particulate matter (PM1) were measured at five-minute resolution by an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at a semi-rural location northwest of the Dallas-Fort Worth, TX, area during June 2011. Because...
Saved in:
Published in: | Atmospheric environment (1994) Vol. 126; pp. 45 - 54 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-02-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The composition, concentration, and size of submicron particulate matter (PM1) were measured at five-minute resolution by an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at a semi-rural location northwest of the Dallas-Fort Worth, TX, area during June 2011. Because of increased organic aerosol (OA) levels, focus here is placed on the period from June 17–30. The total measured PM1 mass concentration ranged between 1.1 and 16.5 μg m−3, with a mean of 4.4 ± 2.6 (one s.d.) μg m−3. Significant variability is observed in the time series of total PM1 and of four individual HR-ToF-AMS species, particularly between June 21 and 25. The average PM1 mass composition was dominated by OA (55.0 ± 14.8%) and sulfate (30.7 ± 12.3%). Organic aerosol concentrations were correlated positively with carbon monoxide (CO) (R = 0.81). This study uses a variety of aging metrics and their relations to OA/ΔCO to characterize secondary organic aerosol. Photochemical age is estimated by using the toluene to benzene ratio. The average photochemical age was 26.7 ± 5.3 h. Other metrics of age used in this work include the ratio of sulfate to total sulfur and the ratio of nitrogen oxides to total reactive nitrogen. The correlations between the OA/ΔCO and nitrogen aging metrics indicate consistent aging, and a weak relationship is observed between OA/ΔCO and sulfur aging. However, the relationship between photochemical age and OA/ΔCO does not show a statistically significant correlation.
•OA/ΔCO and aging metric for NOx is correlated.•More rapid OA enhancement is observed with lower values of the NOx aging metric.•OA/ΔCO is weakly correlated to sulfur aging metric.•The relation between OA/ΔCO and photochemical age is not statistically significant. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/j.atmosenv.2015.11.044 |