Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate-Glutathione Cycle

The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (F /F and qP), due to increased accumulation...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science Vol. 8; p. 1
Main Authors: Tripathi, Durgesh K, Mishra, Rohit K, Singh, Swati, Singh, Samiksha, Vishwakarma, Kanchan, Sharma, Shivesh, Singh, Vijay P, Singh, Prashant K, Prasad, Sheo M, Dubey, Nawal K, Pandey, Avinash C, Sahi, Shivendra, Chauhan, Devendra K
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 06-02-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (F /F and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate-glutatione cycle (AsA-GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA-GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA-GSH cycle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Taras P. Pasternak, Albert Ludwigs University of Freiburg, Germany; Rudra Deo Tripathi, National Botanical Research Institute (CSIR), India
Edited by: Shabir Hussain Wani, Michigan State University, USA
This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2017.00001