Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant

Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg·kg-1 Cd was found present i...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of environmental science & engineering Vol. 11; no. 1; pp. 123 - 135
Main Authors: Huang, Sheng, Zhao, Xin, Sun, Yanqiu, Ma, Jianli, Gao, Xiaofeng, Xie, Tian, Xu, Dongsheng, Yu, Yi, Zhao, Youcai
Format: Journal Article
Language:English
Published: Beijing Higher Education Press 01-02-2017
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg·kg-1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg·kg-1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰ were obtained from laboratory simulated ICDW using both glacial acetic acidsodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68 9‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and demlal ingestion amount by local workers was 9.8 × 10-3 and 1.9 × 10-2 mg.(kg-d)-1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
Bibliography:Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg·kg-1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg·kg-1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰ were obtained from laboratory simulated ICDW using both glacial acetic acidsodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68 9‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and demlal ingestion amount by local workers was 9.8 × 10-3 and 1.9 × 10-2 mg.(kg-d)-1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
Industrial demolition wastes; Heavy metals; Pesticides; Leaching characteristics; Risk assessment ;Waste management
10-1013/X
Document received on :2016-09-12
Waste management
Leaching characteristics
Document accepted on :2016-12-14
Risk assessment
Pesticides
Industrial demolition wastes
Heavy metals
ISSN:2095-2201
2095-221X
DOI:10.1007/s11783-017-0901-2