Information geometry for multiparameter models: new perspectives on the origin of simplicity
Complex models in physics, biology, economics, and engineering are often , meaning that the model parameters are not well determined by the model predictions for collective behavior. Many parameter combinations can vary over decades without significant changes in the predictions. This review uses in...
Saved in:
Published in: | Reports on progress in physics Vol. 86; no. 3 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
28-12-2022
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Complex models in physics, biology, economics, and engineering are often
, meaning that the model parameters are not well determined by the model predictions for collective behavior. Many parameter combinations can vary over decades without significant changes in the predictions. This review uses information geometry to explore sloppiness and its deep relation to emergent theories. We introduce the
of predictions, whose coordinates are the model parameters. Its
structure explains why only a few parameter combinations matter for the behavior. We review recent rigorous results that connect the hierarchy of hyperribbon widths to approximation theory, and to the smoothness of model predictions under changes of the control variables. We discuss recent geodesic methods to find simpler models on nearby boundaries of the model manifold-emergent theories with fewer parameters that explain the behavior equally well. We discuss a Bayesian prior which optimizes the mutual information between model parameters and experimental data, naturally favoring points on the emergent boundary theories and thus simpler models. We introduce a 'projected maximum likelihood' prior that efficiently approximates this optimal prior, and contrast both to the poor behavior of the traditional Jeffreys prior. We discuss the way the renormalization group coarse-graining in statistical mechanics introduces a flow of the model manifold, and connect stiff and sloppy directions along the model manifold with relevant and irrelevant eigendirections of the renormalization group. Finally, we discuss recently developed 'intensive' embedding methods, allowing one to visualize the predictions of arbitrary probabilistic models as low-dimensional projections of an isometric embedding, and illustrate our method by generating the model manifold of the Ising model. |
---|---|
ISSN: | 1361-6633 |
DOI: | 10.1088/1361-6633/aca6f8 |