Cracking processes in Barre granite: fracture process zones and crack coalescence
This paper presents a comprehensive study of the cracking and coalescence behavior of granite specimens with pre-existing flaw pairs. Uniaxial compressions tests were conducted on Barre granite with pre-existing flaw pairs of varying inclination angles , bridging angles and ligament lengths (L). The...
Saved in:
Published in: | International journal of fracture Vol. 180; no. 2; pp. 177 - 204 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-04-2013
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a comprehensive study of the cracking and coalescence behavior of granite specimens with pre-existing flaw pairs. Uniaxial compressions tests were conducted on Barre granite with pre-existing flaw pairs of varying inclination angles
, bridging angles
and ligament lengths (L). The cracking processes were recorded using a high speed camera to capture crack initiation and determine the mode (tensile or shear) of cracking. Visible fracture process zones of grain lightening, referred to as “white patching”, were also observed. White patching corresponded to fracture process zones that developed before visible cracks appeared. Cracks were typically preceded by a corresponding linear white patching. Diffusive area white patching was also observed near locations where surface spalling eventually occurred. Shear cracks occurred less often when compared to other brittle materials such as gypsum and marble and tensile cracks were typically much more jagged in shape (saw-toothed) due to the larger size and higher strength mineral grains of granite. Crack coalescence behavior trended from indirect to direct shear and combined shear-tensile to direct tensile coalescence as the flaw pair bridging angle
or flaw angle
increased. As the ligament length (L) between flaws increased, more indirect coalescence was observed. As expected, due to the increased occurrence of tensile cracking in granite, more indirect tensile coalescence was observed in granite compared to other materials previously studied. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0376-9429 1573-2673 |
DOI: | 10.1007/s10704-013-9810-y |