Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid...
Saved in:
Published in: | The Journal of biological chemistry Vol. 290; no. 35; pp. 21376 - 21392 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
28-08-2015
American Society for Biochemistry and Molecular Biology |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells.
Background: TPCs are regulated by NAADP and other factors.
Results: NAADP-induced Ca2+ release from acidic stores evokes depolarizing currents in pancreatic β cells. Inhibition of NAADP signaling or TPC knock out attenuates Ca2+ signaling and insulin secretion.
Conclusion: NAADP-evoked Ca2+ release enhances β cell excitability and insulin secretion in response to glucose or sulfonylureas.
Significance: NAADP signaling pathways offer novel therapeutic targets for diabetes treatment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4571866 Present address: The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom. Deceased. |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M115.671248 |