Efficient implicit LES method for the simulation of turbulent cavitating flows

We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 316; pp. 453 - 469
Main Authors: Egerer, Christian P., Schmidt, Steffen J., Hickel, Stefan, Adams, Nikolaus A.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-07-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flow field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2016.04.021