Efficient implicit LES method for the simulation of turbulent cavitating flows
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike...
Saved in:
Published in: | Journal of computational physics Vol. 316; pp. 453 - 469 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-07-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flow field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2016.04.021 |