Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins

To date, several cold-seep areas which fuel chemosynthesis-based benthic communities have been explored, mainly by deployment of manned submersibles. They are located in the Atlantic and in the Eastern and Western Pacific oceans and in the Mediterranean Sea, in depths ranging between 400 and 6000 m...

Full description

Saved in:
Bibliographic Details
Published in:Deep-sea research. Part II, Topical studies in oceanography Vol. 45; no. 1; pp. 517 - 567
Main Authors: Sibuet, Myriam, Olu, Karine
Format: Journal Article
Language:English
Published: Elsevier Ltd 1998
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To date, several cold-seep areas which fuel chemosynthesis-based benthic communities have been explored, mainly by deployment of manned submersibles. They are located in the Atlantic and in the Eastern and Western Pacific oceans and in the Mediterranean Sea, in depths ranging between 400 and 6000 m in different geological contexts in passive and active margins. Our study is based on a review of the existent literature on 24 deep cold seeps. The geographic distribution of seeps, the variations of origin and composition of fluids, and rates of fluid flow are presented as they are important factors which explain the spatial heterogeneity and the biomass of biological communities. Methane-rich fluid of thermogenic and/or biogenic origin is the principal source of energy for high-productive communities; however, production of sulphide by sulphate reduction in the sediment also has a major role. The dominant seep species are large bivalves belonging to the families Vesicomyidae or Mytilidae. Other symbiont-containing species occur belonging to Solemyidae, Thyasiridae, Lucinidae bivalves, Pogonophora worms, Cladorhizidae and Hymedesmiidae sponges. Most of the symbiont-containing cold-seep species are new to science. Different symbiont-containing species rely on sulphide or methane oxidation, or both, via chemoautotrophic endosymbiotic bacteria. A total of 211 species, from which 64 are symbiont-containing species, have been inventoried. Patterns in biodiversity and biogeography are proposed. A large majority of the species are endemic to a seep area and the symbiont-containing species are mainly endemic to the cold-seep ecosystem. A comparison of species found in other deep chemosynthesis-based ecosystems, hydrothermal vents, whale carcass and shipwreck reduced habitats, reveals from the existing data, that only 13 species, of which five are symbiont-containing species occur, at both seeps and hydrothermal vents. The species richness of cold-seep communities decreases with depth. High diversity compared to that on hydrothermal vent sites is found at several seeps. This may be explained by the duration of fluid flow, the sediment substrate which may favour long-term conditions with accumulation of sulphide and the evolution of cold seeps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-0645
1879-0100
DOI:10.1016/S0967-0645(97)00074-X