Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice

Disruption of the X-chromosome fibroblast growth factor 16 (Fgf-16) gene, a member of the FGF-9 subfamily with FGF-20, was linked with an effect on cardiac development in two independent studies. However, poor trabeculation with lethality by embryonic day (E) 11.5 was associated with only one, invol...

Full description

Saved in:
Bibliographic Details
Published in:DNA and cell biology Vol. 29; no. 8; p. 407
Main Authors: Lu, Shun Yan, Jin, Yan, Li, Xiaodong, Sheppard, Patricia, Bock, Margaret E, Sheikh, Farah, Duckworth, Mary Lynn, Cattini, Peter A
Format: Journal Article
Language:English
Published: United States 01-08-2010
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Disruption of the X-chromosome fibroblast growth factor 16 (Fgf-16) gene, a member of the FGF-9 subfamily with FGF-20, was linked with an effect on cardiac development in two independent studies. However, poor trabeculation with lethality by embryonic day (E) 11.5 was associated with only one, involving maintenance in Black Swiss (Bsw) versus C57BL/6 mice. The aim of this study was to examine the potential influence of genetic background through breeding the null mutation onto an alternate (C57BL/6) background. After three generations, 25% of Fgf-16(-/Y) mice survived to adulthood, which could be reversed by reducing the contribution of the C57BL/6 genetic background by back crossing to another strain. There was no significant difference between FGF-9 and FGF-20 RNA levels in Fgf-16 null versus wild-type mice regardless of strain. However, FGF-8 RNA levels were reduced significantly in Bsw but not C57BL/6 mice. FGF-8 is linked to anterior heart development and like the FGF-9 subfamily is reportedly expressed at E10.5. Like FGF-16, neuregulin as well as signaling via ErbB2 and ErbB4 receptors have been linked to trabeculae formation and cardiac development around E10.5. Basal neuregulin, ErbB2, and ErbB4 as well as FGF-8, FGF-9, and FGF-16 RNA levels varied in Bsw versus C57BL/6 mice. These data are consistent with the ability of genetic background to modify the phenotype and affect embryonic survival in Fgf-16 null mice.
ISSN:1557-7430
DOI:10.1089/dna.2010.1024