Brightening of dark excitons in 2D perovskites

Optically inactive dark exciton states play an important role in light emission processes in semiconductors because they provide an efficient nonradiative recombination channel. Understanding the exciton fine structure in materials with potential applications in light-emitting devices is therefore c...

Full description

Saved in:
Bibliographic Details
Published in:Science advances Vol. 7; no. 46; p. eabk0904
Main Authors: Dyksik, Mateusz, Duim, Herman, Maude, Duncan K, Baranowski, Michal, Loi, Maria Antonietta, Plochocka, Paulina
Format: Journal Article
Language:English
Published: United States American Association for the Advancement of Science 12-11-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optically inactive dark exciton states play an important role in light emission processes in semiconductors because they provide an efficient nonradiative recombination channel. Understanding the exciton fine structure in materials with potential applications in light-emitting devices is therefore critical. Here, we investigate the exciton fine structure in the family of two-dimensional (2D) perovskites (PEA) SnI , (PEA) PbI , and (PEA) PbBr . In-plane magnetic field mixes the bright and dark exciton states, brightening the otherwise optically inactive dark exciton. The bright-dark splitting increases with increasing exciton binding energy. Hot photoluminescence is observed, indicative of a non-Boltzmann distribution of the bright-dark exciton populations. We attribute this to the phonon bottleneck, which results from the weak exciton–acoustic phonon coupling in soft 2D perovskites. Hot photoluminescence is responsible for the strong emission observed in these materials, despite the substantial bright-dark exciton splitting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abk0904