Markov random field segmentation of brain MR images
Describes a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images. By means of Markov random fields (MRF's) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tis...
Saved in:
Published in: | IEEE transactions on medical imaging Vol. 16; no. 6; pp. 878 - 886 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-12-1997
Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Describes a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images. By means of Markov random fields (MRF's) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities. Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm. In particular, the impact of noise, inhomogeneity, smoothing, and structure thickness are analyzed quantitatively. Even single-echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone, and background. A simulated annealing and an iterated conditional modes implementation are presented. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.650883 |