Designing synergistic crystallization inhibitors: Bile salt derivatives of cellulose with enhanced hydrophilicity
Crystallization inhibitors in amorphous solid dispersions (ASD) enable metastable supersaturated drug solutions that persist for a physiologically relevant time. Olefin cross-metathesis (CM) has successfully provided multifunctional cellulose-based derivatives as candidate ASD matrix polymers. In pr...
Saved in:
Published in: | Carbohydrate polymers Vol. 292; p. 119680 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
15-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Crystallization inhibitors in amorphous solid dispersions (ASD) enable metastable supersaturated drug solutions that persist for a physiologically relevant time. Olefin cross-metathesis (CM) has successfully provided multifunctional cellulose-based derivatives as candidate ASD matrix polymers. In proof of concept studies, we prepared hydrophobic bile salt/cellulose adducts by CM with naturally occurring bile salts. We hypothesized that increased hydrophilicity would enhance the ability of these conjugates to maximize bioactive supersaturation. Their selective preparation presents a significant synthetic challenge, given polysaccharide reactivity and polysaccharide and bile salt complexity. We prepared such derivatives using a more hydrophilic hydroxypropyl cellulose (HPC) backbone, employing a pent-4-enyl tether (Pen) for appending bile acids. We probed structure-property relationships by varying the nature and degree of substitution of the bile acid substituent (lithocholic or deoxycholic acid). These conjugates are indeed synergistic inhibitors, as demonstrated with the fast-crystallizing prostate cancer drug, enzalutamide. The lithocholic acid methyl ester derivative, AcrMLC-PenHHPCPen (0.64), increased induction time 68 fold vs. drug alone.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2022.119680 |