Reduced Vestibulo-Ocular Reflex During Fast Head Rotation in Complete Darkness
The human vestibulo-ocular reflex (VOR) leads to maintenance of the acuity of an image on the retina and contributes to the perception of orientation during high acceleration head movements. Our objective was to determine whether vision affects the horizontal VOR by assessing and comparing the perfo...
Saved in:
Published in: | Perceptual and motor skills Vol. 130; no. 4; pp. 1400 - 1414 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Los Angeles, CA
SAGE Publications
01-08-2023
SAGE PUBLICATIONS, INC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The human vestibulo-ocular reflex (VOR) leads to maintenance of the acuity of an image on the retina and contributes to the perception of orientation during high acceleration head movements. Our objective was to determine whether vision affects the horizontal VOR by assessing and comparing the performance at the boundaries of contribution of: (a) unrestricted visual information and (b) no visual information. Understanding how the VOR performs under both lighted and unlighted conditions is of paramount importance to avoiding falls, perhaps particularly among the elderly. We tested 23 participants (M age = 35.3 years, standard error of mean (SEM) = 2.0 years). The participants were tested with the video Head Impulse Test (vHIT), EyeSeeCam from Interacoustics™, which assesses whether VOR is of the expected angular velocity compared to head movement angular velocity. The vHIT tests were performed under two conditions: (a) in a well-lit room and (b) in complete darkness. The VOR was analyzed by evaluating the gain (quotient between eye and head angular velocity) at 40, 60 and 80 ms time stamps after the start of head movement. Additionally, we calculated the approximate linear gain between 0-100 ms through regression. The gain decreased significantly faster across time stamps in complete darkness (p < .001), by 10% in darkness compared with a 2% decrease in light. In complete darkness, the VOR gain gradually declined, reaching a marked reduction at 80 ms by 10% (p < .001), at which the head velocities were 150°/second or faster. The approximate linear gain value was not significantly different in complete darkness and in light. These findings suggest that information from the visual system can modulate the high velocity VOR. Subsequently, fast head turns might cause postural imbalance and momentary disorientation in poor light in people with reduced sensory discrimination or motor control, like the elderly. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-5125 1558-688X |
DOI: | 10.1177/00315125231172815 |