Sensitivity of Four Indices of Meteorological Drought for Rainfed Maize Yield Prediction in the State of Sinaloa, Mexico

In the state of Sinaloa, rainfall presents considerable irregularities, and the climate is mainly semiarid, which highlights the importance of studying the sensitivity of various indices of meteorological drought. The goal is to evaluate the sensitivity of four indices of meteorological drought from...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) Vol. 12; no. 4; p. 525
Main Authors: Omar, Llanes-Cárdenas, Mariano, Norzagaray-Campos, Alberto, Gaxiola, Ernestina, Pérez-González, Jorge, Montiel-Montoya, Enrique, Troyo-Diéguez
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-04-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the state of Sinaloa, rainfall presents considerable irregularities, and the climate is mainly semiarid, which highlights the importance of studying the sensitivity of various indices of meteorological drought. The goal is to evaluate the sensitivity of four indices of meteorological drought from five weather stations in Sinaloa for the prediction of rainfed maize yield. Using DrinC software and data from the period 1982–2013, the following were calculated: the standardized precipitation index (SPI), agricultural standardized precipitation index (aSPI), reconnaissance drought index (RDI) and effective reconnaissance drought index (eRDI). The observed rainfed maize yield (RMYob) was obtained online, through free access from the database of the Agrifood and Fisheries Information Service of the government of Mexico. Sensitivities between the drought indices and RMYob were estimated using Pearson and Spearman correlations. Predictive models of rainfed maize yield (RMYpr) were calculated using multiple linear and nonlinear regressions. In the models, aSPI and eRDI with reference periods and time steps of one month (January), two months (December–January) and three months (November–January), were the most sensitive. The correlation coefficients between RMYob and RMYpr ranged from 0.423 to 0.706, all being significantly different from zero. This study provides new models for the early calculation of RMYpr. Through appropriate planning of the planting–harvesting cycle of dryland maize, substantial socioeconomic damage can be avoided in one of the most important agricultural regions of Mexico.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture12040525