OsNAC15 Regulates Tolerance to Zinc Deficiency and Cadmium by Binding to OsZIP7 and OsZIP10 in Rice

Zinc (Zn) deficiency and cadmium (Cd) stress are severe threats to the growth and development of plants. Increasing Zn content and/or decreasing Cd content in grain are also important objectives of rice breeding. However, the molecular mechanisms of Zn deficiency tolerance (ZDT) and Cd stress tolera...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 23; no. 19; p. 11771
Main Authors: Zhan, Junhui, Zou, Wenli, Li, Shuangyuyan, Tang, Jichun, Lu, Xiang, Meng, Lijun, Ye, Guoyou
Format: Journal Article
Language:English
Published: Basel MDPI AG 04-10-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zinc (Zn) deficiency and cadmium (Cd) stress are severe threats to the growth and development of plants. Increasing Zn content and/or decreasing Cd content in grain are also important objectives of rice breeding. However, the molecular mechanisms of Zn deficiency tolerance (ZDT) and Cd stress tolerance (CDT) are largely unknown in rice. Here, we report that a NAM/CUC2-like transcription factor, OsNAC15, contributes to ZDT and CDT in rice. Knockout of OsNAC15 reduced ZDT and CDT at the vegetative stage. OsNAC15 expresses in all tissues of different developmental stages, and is repressed by Zn deficiency and induced by Cd stress. OsNAC15 is a functional transcription factor with transactivation and DNA binding activities. Expression analysis of rice ZIP family genes suggested that the knockout of OsNAC15 activates or inhibits their transcriptions under Zn deficiency or Cd stress conditions. The yeast one-hybrid assay, transient transcriptional activity assay using the dual-luciferase reporter system and electrophoretic mobility shift assay demonstrated that OsNAC15 directly binds to the zinc deficiency-responsive element motifs in the promoters of OsZIP7 and OsZIP10 to repress their transcriptions. The OsNAC15–OsZIP7/10 module is an essential foundation for further study on the regulatory mechanisms of ZDT and CDT in rice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms231911771