Thermal Design of High-Energy-Density Wound Components

This paper presents an alternative computationally efficient approach to the thermal design of compact wound components. The method is based on the use of anisotropic lumped regions within 3-D thermal finite-element analyses. The lumped regions replicate the multimaterial composites used in the cons...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 58; no. 9; pp. 4096 - 4104
Main Authors: Wrobel, R., Mellor, P. H.
Format: Journal Article
Language:English
Published: New York IEEE 01-09-2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an alternative computationally efficient approach to the thermal design of compact wound components. The method is based on the use of anisotropic lumped regions within 3-D thermal finite-element analyses. The lumped regions replicate the multimaterial composites used in the construction of wound components. Material data for these lumped regions are obtained experimentally, accounting for the thermal anisotropy. Input loss data for the analysis were derived by combining electromagnetic finite-element iron loss calculations with experimental ac copper loss correlations. The technique is applied to a design of a high-energy-density filter inductor. Thermal measurements from prototype inductors are compared with the theoretical predictions showing a good agreement.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2010.2093485