Removal of Cd2+ from Water by Use of Super-Macroporous Cryogels and Comparison to Commercial Adsorbents
In this study amphoteric cryogels were synthesized by the use of free-radical co-polymerization of acrylate-based precursors (methacrylic acid and 2-acrylamido-2-methyl-1-propansulfonic acid) with allylamine at different ratios. The physico-chemical characteristics of the cryogels were examined usin...
Saved in:
Published in: | Polymers Vol. 12; no. 10; p. 2405 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
19-10-2020
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study amphoteric cryogels were synthesized by the use of free-radical co-polymerization of acrylate-based precursors (methacrylic acid and 2-acrylamido-2-methyl-1-propansulfonic acid) with allylamine at different ratios. The physico-chemical characteristics of the cryogels were examined using SEM/EDX, FT-IR, XPS and zeta potential measurements. The cryogels were tested toward Cd2+ removal from aqueous solutions at various pH and initial concentrations. Equilibrium studies revealed a maximum sorption capacity in the range of 132–249 mg/g. Leaching experiments indicated the stability of Cd2+ in the cryogel structure. Based on kinetics, equilibrium and characterization results, possible removal mechanisms are proposed, indicating a combination of ion exchange and complexation of Cd2+ with the cryogels’ surface functional groups. The cryogels were compared to commercially available adsorbents (zeolite Y and cation exchange resin) for the removal of Cd2+ from various water matrices (ultrapure water, tap water and river water) and the results showed that, under the experimental conditions used, the cryogels can be more effective adsorbents. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym12102405 |