Short-term Influences of Lung Volume Reduction Surgery on the Diaphragm in Emphysematous Hamsters

With emphysema, diaphragm length adaptation results in shortened fibers. We hypothesize that passive diaphragm stretch occurring acutely after lung volume reduction surgery (LVRS) results in fiber injury. Bilateral LVRS was performed in emphysematous hamsters. Studies were performed 1 (D1) and 4 (D4...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory and critical care medicine Vol. 170; no. 7; pp. 753 - 759
Main Authors: Lewis, Michael I, Fournier, Mario, Da, Xiaoyu, Li, Hongmei, Mosenifar, Zab, McKenna, Robert J., Jr, Cohen, Arthur H
Format: Journal Article
Language:English
Published: New York, NY Am Thoracic Soc 01-10-2004
American Lung Association
American Thoracic Society
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With emphysema, diaphragm length adaptation results in shortened fibers. We hypothesize that passive diaphragm stretch occurring acutely after lung volume reduction surgery (LVRS) results in fiber injury. Bilateral LVRS was performed in emphysematous hamsters. Studies were performed 1 (D1) and 4 (D4) days after LVRS, and compared with sham-treated groups. Sarcolemmal rupture was evident in 10.9% of fibers in LVRS-D1 and reduced to 1.6% in LVRS-D4. Ultrastructural analysis revealed focal abnormalities in both LVRS-D1 and LVRS-D4 animals in over one-third of fibers. Myofibrillar disruption was not observed in sham-treated animals. Diaphragm insulin-like growth factor-I (IGF-I) was increased in LVRS-D4 compared with other emphysematous groups. Increased IGF-I immunoreactivity was localized to types IIA and I fibers. The abundance of the splice variant of IGF-I mRNA sensitive to muscle stretch (IGF-IEb) increased 3.2-fold in LVRS D-4 diaphragms, compared with emphysema-sham animals. The main form of IGF-I mRNA was unchanged. Marked force deficit was observed in the LVRS-D1 diaphragm, compared with emphysema-sham and emphysema (no surgery) animals. These data highlight a markedly compromised ventilatory pump acutely after LVRS. Acute fiber stretch predisposes to muscle fiber injury and may also be a necessary mechanotransductive stimulus for fiber remodeling as the diaphragm adapts to reduced lung volume.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1073-449X
1535-4970
DOI:10.1164/rccm.200402-181OC