Study of Water Sorption in Methacryl-Based Polyhedral Oligomeric Silsesquioxane (POSS) Dental Composites Using Molecular Dynamics Simulations

Methacrylate-based polyhedral oligomeric silsesquioxane (POSS) is one of the new composites used as a dental resin. Both monofunctional methacryl isobutyl POSS (MIPOSS) and multifunctional methacryl POSS (MAPOSS) are reported to be possible resins that possess the desired properties for using them a...

Full description

Saved in:
Bibliographic Details
Published in:Polymers Vol. 15; no. 20; p. 4161
Main Authors: Madhuranthakam, Chandra Mouli R., Pandiyan, Sudharsan, Chaalal, Omar, Elkamel, Ali
Format: Journal Article
Language:English
Published: Basel MDPI AG 20-10-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methacrylate-based polyhedral oligomeric silsesquioxane (POSS) is one of the new composites used as a dental resin. Both monofunctional methacryl isobutyl POSS (MIPOSS) and multifunctional methacryl POSS (MAPOSS) are reported to be possible resins that possess the desired properties for using them as dental resins. Our group’s previous comparative study on these two resins showed that the MAPOSS composite has superior mechanical properties compared with the MIPOSS composite. In this article, molecular dynamic simulations (MD simulations) are performed to study the water sorption in these two composites. Water sorption in dental composites can have several effects on the material properties, performance, and longevity of dental restorations. Water sorption in MAPOSS and MIPOSS composites is analyzed by studying the hydrogen bonding, cluster analysis, density projection calculations, and diffusion coefficient calculation of water molecules within the resin matrix. MD simulations results are further used to understand the interaction of water molecules with the resin matrix comprehensively, which governs the composite’s mechanical properties. The water sorption study showed that the MAPOSS composite has less water sorption capacity than the MIPOSS composite. The practical significance of this study is to find properties that affect dental restoration and longevity, which can help in the design of better materials for dental applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15204161