A Transfer‐Learning Approach for Accelerated MRI Using Deep Neural Networks

Purpose Neural networks have received recent interest for reconstruction of undersampled MR acquisitions. Ideally, network performance should be optimized by drawing the training and testing data from the same domain. In practice, however, large datasets comprising hundreds of subjects scanned under...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 84; no. 2; pp. 663 - 685
Main Authors: Dar, Salman Ul Hassan, Özbey, Muzaffer, Çatlı, Ahmet Burak, Çukur, Tolga
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-08-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Neural networks have received recent interest for reconstruction of undersampled MR acquisitions. Ideally, network performance should be optimized by drawing the training and testing data from the same domain. In practice, however, large datasets comprising hundreds of subjects scanned under a common protocol are rare. The goal of this study is to introduce a transfer‐learning approach to address the problem of data scarcity in training deep networks for accelerated MRI. Methods Neural networks were trained on thousands (upto 4 thousand) of samples from public datasets of either natural images or brain MR images. The networks were then fine‐tuned using only tens of brain MR images in a distinct testing domain. Domain‐transferred networks were compared to networks trained directly in the testing domain. Network performance was evaluated for varying acceleration factors (4‐10), number of training samples (0.5‐4k), and number of fine‐tuning samples (0‐100). Results The proposed approach achieves successful domain transfer between MR images acquired with different contrasts (T1‐ and T2‐weighted images) and between natural and MR images (ImageNet and T1‐ or T2‐weighted images). Networks obtained via transfer learning using only tens of images in the testing domain achieve nearly identical performance to networks trained directly in the testing domain using thousands (upto 4 thousand) of images. Conclusion The proposed approach might facilitate the use of neural networks for MRI reconstruction without the need for collection of extensive imaging datasets.
Bibliography:Funding information
This work was supported in part by the following: Marie Curie Actions Career Integration grant (PCIG13‐GA‐2013‐618101), European Molecular Biology Organization Installation grant (IG 3028), TUBA GEBIP fellowship, TUBITAK 1001 grant (118E256), and BAGEP fellowship awarded to T. Çukur. We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research
2
Correction added after online publication 6 March 2020. The author has updated section 3.1.2 to change “T2‐domain transfer” to “T
domain transfer.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.28148