Investigating the impact of innovative AI chatbot on post‐pandemic medical education and clinical assistance: a comprehensive analysis
Background The COVID‐19 pandemic has significantly disrupted clinical experience and exposure of medical students and junior doctors. Artificial Intelligence (AI) integration in medical education has the potential to enhance learning and improve patient care. This study aimed to evaluate the effecti...
Saved in:
Published in: | ANZ journal of surgery Vol. 94; no. 1-2; pp. 68 - 77 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Melbourne
John Wiley & Sons Australia, Ltd
01-02-2024
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The COVID‐19 pandemic has significantly disrupted clinical experience and exposure of medical students and junior doctors. Artificial Intelligence (AI) integration in medical education has the potential to enhance learning and improve patient care. This study aimed to evaluate the effectiveness of three popular large language models (LLMs) in serving as clinical decision‐making support tools for junior doctors.
Methods
A series of increasingly complex clinical scenarios were presented to ChatGPT, Google's Bard and Bing's AI. Their responses were evaluated against standard guidelines, and for reliability by the Flesch Reading Ease Score, Flesch–Kincaid Grade Level, the Coleman‐Liau Index, and the modified DISCERN score for assessing suitability. Lastly, the LLMs outputs were assessed by using the Likert scale for accuracy, informativeness, and accessibility by three experienced specialists.
Results
In terms of readability and reliability, ChatGPT stood out among the three LLMs, recording the highest scores in Flesch Reading Ease (31.2 ± 3.5), Flesch–Kincaid Grade Level (13.5 ± 0.7), Coleman–Lau Index (13) and DISCERN (62 ± 4.4). These results suggest statistically significant superior comprehensibility and alignment with clinical guidelines in the medical advice given by ChatGPT. Bard followed closely behind, with BingAI trailing in all categories. The only non‐significant statistical differences (P > 0.05) were found between ChatGPT and Bard's readability indices, and between the Flesch Reading Ease scores of ChatGPT/Bard and BingAI.
Conclusion
This study demonstrates the potential utility of LLMs in fostering self‐directed and personalized learning, as well as bolstering clinical decision‐making support for junior doctors. However further development is needed for its integration into education. |
---|---|
Bibliography: | Yi Xie and Ishith Seth have contributed equally as first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1445-1433 1445-2197 1445-2197 |
DOI: | 10.1111/ans.18666 |