Stochastic stability properties of jump linear systems

Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 37; no. 1; pp. 38 - 53
Main Authors: Feng, X., Loparo, K.A., Ji, Y., Chizeck, H.J.
Format: Journal Article
Language:English
Published: Legacy CDMS IEEE 01-01-1992
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented. Finally, for one-dimensional jump linear system, it is proved that the region for delta -moment stability is monotonically converging to the region for almost sure stability at delta down arrow 0/sup +/.< >
Bibliography:CDMS
Legacy CDMS
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/9.109637