Electrocaloric properties of ferroelectric-paraelectric superlattices controlled by the thickness of paraelectric layer in a wide temperature range

As functions of the paraelectric layer thickness, misfit strain and temperature, the electrocaloric properties of ferroelectric-paraelectric superlattices are investigated using a time-dependent Ginzburg-Landau thermodynamic model. Ferroelectric phase transition driven by the relative thickness of t...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances Vol. 4; no. 10; pp. 107144 - 107144-10
Main Authors: Ma, D. C., Lin, S. P., Chen, W. J., Zheng, Yue, Wang, Biao, Xiong, W. M.
Format: Journal Article
Language:English
Published: Melville American Institute of Physics 01-10-2014
AIP Publishing LLC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As functions of the paraelectric layer thickness, misfit strain and temperature, the electrocaloric properties of ferroelectric-paraelectric superlattices are investigated using a time-dependent Ginzburg-Landau thermodynamic model. Ferroelectric phase transition driven by the relative thickness of the superlattice is found to dramatically impact the electrocaloric response. Near the phase transition temperature, the magnitude of the electrocaloric effect is maximized and shifted to lower temperatures by increasing the relative thickness of paraelectric layer. Theoretical calculations also imply that the electrocaloric effect of the superlattices depends not only on the relative thickness of paraelectric layer but also on misfit strain. Furthermore, control of the relative thickness of paraelectric layer and the misfit strain can change availably both the magnitude and the temperature sensitivity of the electrocaloric effect, which suggests that ferroelectric-paraelectric superlattices may be promising candidates for use in cooling devices in a wide temperature range.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4900858