Machine Learning-Based Coding Unit Depth Decisions for Flexible Complexity Allocation in High Efficiency Video Coding

In this paper, we propose a machine learning-based fast coding unit (CU) depth decision method for High Efficiency Video Coding (HEVC), which optimizes the complexity allocation at CU level with given rate-distortion (RD) cost constraints. First, we analyze quad-tree CU depth decision process in HEV...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 24; no. 7; pp. 2225 - 2238
Main Authors: Yun Zhang, Kwong, Sam, Xu Wang, Hui Yuan, Zhaoqing Pan, Long Xu
Format: Journal Article
Language:English
Published: United States IEEE 01-07-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a machine learning-based fast coding unit (CU) depth decision method for High Efficiency Video Coding (HEVC), which optimizes the complexity allocation at CU level with given rate-distortion (RD) cost constraints. First, we analyze quad-tree CU depth decision process in HEVC and model it as a three-level of hierarchical binary decision problem. Second, a flexible CU depth decision structure is presented, which allows the performances of each CU depth decision be smoothly transferred between the coding complexity and RD performance. Then, a three-output joint classifier consists of multiple binary classifiers with different parameters is designed to control the risk of false prediction. Finally, a sophisticated RD-complexity model is derived to determine the optimal parameters for the joint classifier, which is capable of minimizing the complexity in each CU depth at given RD degradation constraints. Comparative experiments over various sequences show that the proposed CU depth decision algorithm can reduce the computational complexity from 28.82% to 70.93%, and 51.45% on average when compared with the original HEVC test model. The Bjøntegaard delta peak signal-to-noise ratio and Bjøntegaard delta bit rate are -0.061 dB and 1.98% on average, which is negligible. The overall performance of the proposed algorithm outperforms those of the state-of-the-art schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2015.2417498