Scalable RF MEMS Switch Matrices: Methodology and Design
This paper proposes new solutions for implementing wideband large switch matrices. These solutions are based on crossbar and L-shaped topologies. This paper introduces a high-performance wideband switch cell to build up scalable NtimesN switch matrices and gives an account of the design, fabrication...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques Vol. 57; no. 6; pp. 1612 - 1621 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-06-2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes new solutions for implementing wideband large switch matrices. These solutions are based on crossbar and L-shaped topologies. This paper introduces a high-performance wideband switch cell to build up scalable NtimesN switch matrices and gives an account of the design, fabrication, and characteristics of the switch cell and a 3times3 crossbar switch matrix. The chosen design procedure is seen to be appropriate since it produces valid measured results. In addition, this paper presents an RF microelectromechanical systems L-shaped switch matrix, which indicates less variation of characteristics for certain types of connectivity. It also demonstrates that for a 4times4 switch matrix, there is a 50% improvement in insertion loss and phase-shift variation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2009.2020839 |