Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla

Culture liquids of the litter-decomposing basidiomycete Stropharia coronilla showed pro-oxidant activity promoting the peroxidation of linoleic acid. This activity depended on the presence of manganese peroxidase (MnP) in the fungal culture. Pro-oxidant activity maxima coincided with maximum MnP act...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications Vol. 330; no. 2; pp. 371 - 377
Main Authors: Kapich, Alexander N., Steffen, Kari T., Hofrichter, Martin, Hatakka, Annele
Format: Journal Article
Language:English
Published: United States Elsevier Inc 06-05-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Culture liquids of the litter-decomposing basidiomycete Stropharia coronilla showed pro-oxidant activity promoting the peroxidation of linoleic acid. This activity depended on the presence of manganese peroxidase (MnP) in the fungal culture. Pro-oxidant activity maxima coincided with maximum MnP activities during the separation of extracellular proteins by anion-exchange chromatography. Purified MnP1 showed substantial pro-oxidant activity in the presence of acetate and Mn 2+ ions, even without the addition of hydrogen peroxide. A non-phenolic β-O-4 lignin model compound [LMC; 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane] was partially oxidized in an in vitro reaction system developing MnP-dependent lipid peroxidation. The chelating organic acids malonate and tartrate noticeably inhibited both the peroxidation of linoleic acid and the conversion of LMC in the system. The major product of the LMC oxidation was 1-(3,4-dimethoxyphenyl)-1-oxo-2-(2-methoxyphenoxy)-3-hydroxypropane; in addition, small amounts of 3,4-dimethoxybenzaldehyde (veratraldehyde) and 3,4-dimethoxybenzoic (veratric) acid were detected. Thus, MnP-initiated lipid peroxidation may be involved in the degradation of recalcitrant non-phenolic lignin substructures by litter-decomposing fungi similar to MnPs of wood-decaying fungi.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2005.02.167