A Dual pH/O2 Sensing Film Based on Functionalized Electrospun Nanofibers for Real-Time Monitoring of Cellular Metabolism

Real-time monitoring of dissolved oxygen (DO) and pH is of great significance for understanding cellular metabolism. Herein, a dual optical pH/O2 sensing membrane was prepared by the electrospinning method. Cellulose acetate (CA) and poly(ε-caprolactone) (PCL) nanofiber membrane blended with platinu...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 27; no. 5; p. 1586
Main Authors: Zhou, Dongyan, Liu, Hongtian, Ning, Juewei, Cao, Ge, Zhang, He, Deng, Mengyu, Tian, Yanqing
Format: Journal Article
Language:English
Published: Basel MDPI AG 28-02-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real-time monitoring of dissolved oxygen (DO) and pH is of great significance for understanding cellular metabolism. Herein, a dual optical pH/O2 sensing membrane was prepared by the electrospinning method. Cellulose acetate (CA) and poly(ε-caprolactone) (PCL) nanofiber membrane blended with platinum (II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was used as the DO sensing matrix, upon which electrospun nanofiber membrane of chitosan (CS) coupled with fluorescein 5-isothiocyanate (FITC) was used as the pH sensing matrix. The electrospun sensing film prepared from biocompatible biomaterials presented good response to a wide range of DO concentrations and physiological pH. We used it to monitor the exracellular acidification and oxygen consumption levels of cells and bacteria. This sensing film can provide a luminescence signal change as the DO and pH change in the growth microenvironment. Due to its advantages of good biocompatibility and high stability, we believe that the dual functional film has a high value in the field of biotechnology research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27051586