Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates
Aminosilane self-assembled monolayers on silicon substrates have been prepared via a gas-phase procedure based on the consecutive reactions of the aminosilane precursor and water vapor. X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements have been used to charac...
Saved in:
Published in: | Journal of colloid and interface science Vol. 321; no. 1; pp. 235 - 241 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
San Diego, CA
Elsevier Inc
01-05-2008
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aminosilane self-assembled monolayers on silicon substrates have been prepared via a gas-phase procedure based on the consecutive reactions of the aminosilane precursor and water vapor. X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements have been used to characterize the aminosilane layers. For comparison, substrates modified with aminosilane through a liquid-phase procedure have been prepared and characterized by means of the same techniques. The vapor-based procedure was found to yield more uniform layers characterized by fewer and smaller aggregates as compared with liquid-treated substrates. Grazing angles reflection Fourier transform infrared measurements were carried out on the vapor-treated substrates before and after water exposure to investigate the hydrolysis of the alkoxy groups and further reaction to form siloxane bonds. The surface density of amino groups, as estimated through a colorimetric method, is very similar for vapor- and liquid-treated substrates, suggesting a similar reactivity and accessibility of the functional groups on the surface.
Uniform and reproducible aminosilane self-assembled monolayers on silicon substrates have been prepared via a gas-phase procedure, based on the consecutive reactions of the aminosilane precursor and water vapor. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2007.12.041 |