The flavor of the Composite Twin Higgs

A bstract The assumption of anarchic quark flavor puts serious stress on composite Higgs models: flavor bounds imply a tuning of a few per-mille (at best) in the Higgs potential. Composite twin Higgs (CTH) models significantly reduce this tension by opening up a new region of parameter space, obtain...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2016; no. 9; pp. 1 - 32
Main Authors: Csáki, Csaba, Geller, Michael, Telem, Ofri, Weiler, Andreas
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-09-2016
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract The assumption of anarchic quark flavor puts serious stress on composite Higgs models: flavor bounds imply a tuning of a few per-mille (at best) in the Higgs potential. Composite twin Higgs (CTH) models significantly reduce this tension by opening up a new region of parameter space, obtained by raising the coupling among the composites close to the strong coupling limit g ∗ ∼ 4π, thereby raising the scale of composites to around 10 TeV. This does not lead to large tuning in the Higgs potential since the leading quantum corrections are canceled by the twin partners (rather than the composites). We survey the leading flavor bounds on the CTH, which correspond to tree-level Δ F = 2 four-Fermi operators from Kaluza-Klein (KK) Z exchange in the kaon system and 1-loop corrections from KK fermions to the electric dipole moment of the neutron. We provide a parametric estimate for these bounds and also perform a numeric scan of the parameter space using the complete calculation for both quantities. The results confirm our expectation that CTH models accommodate anarchic flavor significantly better than regular composite Higgs (CH) models. Our conclusions apply both to the identical and fraternal twin cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2016)146