Effect of surface modification of poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin

The final goal of the study was to promote understanding of mechanisms involved in cell attachment on biomedical polymer poly(lactic acid) (PLA). As the cell attachment on the material surface was preceded by blood protein adsorption which would critically affect subsequent cell adhesion, for the cl...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science Vol. 310; pp. 42 - 50
Main Authors: SARAPIROM, S, YU, L. D, BOONYAWAN, D, CHAIWONG, C
Format: Conference Proceeding Journal Article
Language:English
Published: Amsterdam Elsevier 15-08-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The final goal of the study was to promote understanding of mechanisms involved in cell attachment on biomedical polymer poly(lactic acid) (PLA). As the cell attachment on the material surface was preceded by blood protein adsorption which would critically affect subsequent cell adhesion, for the clinic application purpose, human serum albumin (HSA) was used in the investigation on its adsorption on PLA, which was however treated by low-pressure ammonia (NH3) plasma. The NH3-plasma-treated PLA was found to adsorb less HSA than the untreated PLA. The PLA was characterized using various techniques such as atomic force microscopy, contact angle and surface energy analysis and x-ray photoelectron spectroscopy. All of the characterization results indicated that due to NH3-plasma-induced polar groups the PLA enhanced its hydrophilicity which in turn inhibited the HSA adsorption. The decreased HSA adsorption would consequently increase the cell attachment because of the cell adhesion barrier reduced.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2014.03.141