A numerical study on mixed convection in a lid-driven cavity with a circular cylinder
A two-dimensional numerical simulation is carried out in this study to investigate mixed convection in a lid-driven cavity with an isothermal circular cylinder. The simulation is conducted at three Reynolds numbers of Re = 100, 500, and 1000 under a fixed Grashof number of Gr = 10 5 . The top wall o...
Saved in:
Published in: | Journal of mechanical science and technology Vol. 27; no. 1; pp. 273 - 286 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Heidelberg
Korean Society of Mechanical Engineers
2013
Springer Nature B.V 대한기계학회 |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A two-dimensional numerical simulation is carried out in this study to investigate mixed convection in a lid-driven cavity with an isothermal circular cylinder. The simulation is conducted at three Reynolds numbers of
Re
= 100, 500, and 1000 under a fixed Grashof number of
Gr
= 10
5
. The top wall of the cavity moves to the right at a constant velocity and is kept at a low temperature of
T
c
, whereas the stationary bottom wall is kept at a constant high temperature of
T
h
. The immersed-boundary method, which is based on the finite volume method, is adopted for the boundary of the circular cylinder that is present in the square cavity. The present study aims to investigate the effects of circular cylinder on fluid flow and heat transfer in a cavity at different locations. The fluid flow and heat transfer characteristics in the cavity strongly depend on the position of the circular cylinder as well as on the relative magnitude of the forced convection and the natural convection caused by the movement in the top wall of the cavity and the heating at the hot bottom wall, respectively. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 G704-000058.2013.27.1.031 |
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-012-1201-1 |