Deflection predictions of involute-shaped fuel plates using a fully-coupled numerical approach

This paper describes the modeling and simulation of fluid structure interactions (FSI) of involute-shaped fuel plates used in nuclear research reactors. We believe this to be the first time that this type of application is described in the literature using a fully-coupled, and monolithic, finite ele...

Full description

Saved in:
Bibliographic Details
Published in:Annals of nuclear energy Vol. 130; no. C; pp. 184 - 191
Main Authors: Curtis, Franklin G., Freels, James D., Ekici, Kivanc
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01-08-2019
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the modeling and simulation of fluid structure interactions (FSI) of involute-shaped fuel plates used in nuclear research reactors. We believe this to be the first time that this type of application is described in the literature using a fully-coupled, and monolithic, finite element approach. The simulations are validated against plate deflection data for the conceptual design of the Advanced Neutron Source Reactor (ANSR), which was envisioned to be the world’s most powerful nuclear research reactor for neutron scattering and other applications, but was ultimately never completed. The high performance of the ANSR creates a bounding envelope for involute-shaped research reactors such as that used in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) which is undergoing research for the conversion from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. As such, the findings from the present FSI analyses carried out herein for the ANSR plates provide good guidelines and inform designers what should be expected for the next generation of plates in the HFIR. It is shown herein that the current approach can accurately capture the leading-edge deflections of the involute-shaped plates and simulations can predict the ‘S-shaped’ deflection of the first mode instilling confidence in the methodology.
Bibliography:USDOE
AC05-00OR22725
ISSN:0306-4549
1873-2100
DOI:10.1016/j.anucene.2019.02.001